
Solving problems by searching

Chapter 3

2

Outline

� Problem-solving agents

� Problem types

� Problem formulation

� Example problems

� Basic search algorithms

3

Example: Romania

� On holiday in Romania; currently in Arad.

� Flight leaves tomorrow from Bucharest

� Formulate goal:

- be in Bucharest

� Formulate problem:

- states: various cities

- actions: drive between cities

� Find solution:

- sequence of cities, e.g. Arad, Sibiu, Fagaras, Bucharest

4

Example: Romania

5

Problem-solving agent

Restricted form of general agent; solution executed “eyes closed“:

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) return an action

static: seq, an action sequence

state, some description of the current world state

goal, a goal

problem, a problem formulation

state ← UPDATE-STATE(state, percept)

if seq is empty then

goal ← FORMULATE-GOAL(state)

problem ← FORMULATE-PROBLEM(state,goal)

seq ← SEARCH(problem)

action ← FIRST(seq)

seq ← REST(seq)

return action

6

Problem types

� Deterministic, fully observable å single-state problem

- Agent knows exactly which state it will be in; solution is a
sequence

� Non-observable å sensor-less problem (conformant problem)

- Agent may have no idea where it is; solution is a sequence

� Partially observable å contingency problem

- Perception provides new information about current state

- Often interleave search, execution

� Unknown state space å exploration problem

- When states and actions of the environment are unknown

7

Example: vacuum world

� Single-state, start in #5.

Solution?

8

Example: vacuum world

� Single-state, start in #5.

Solution? [Right, Suck]

� Sensorless, start in

{1,2,3,4,5,6,7,8} e.g.,

Right goes to {2,4,6,8}

Solution?

9

Example: vacuum world

� Sensorless, start in

{1,2,3,4,5,6,7,8} e.g.,

Right goes to {2,4,6,8}

Solution?

[Right,Suck,Left,Suck]

� Contingency

- Nondeterministic: Suck may

dirty a clean carpet

- Partially observable: location, dirt at current location

- Percept: [L, Clean], i.e., start in #5 or #7

Solution?

10

Example: vacuum world

� Sensorless, start in

{1,2,3,4,5,6,7,8} e.g.,

Right goes to {2,4,6,8}

Solution?

[Right,Suck,Left,Suck]

� Contingency

- Nondeterministic: Suck may

dirty a clean carpet

- Partially observable: location, dirt at current location.

- Percept: [L, Clean], i.e., start in #5 or #7

Solution? [Right, if dirt then Suck]

11

Single-state problem formulation

A problem is defined by four items:

1. initial state, e.g. "at Arad"

2. actions or successor function S(x) = set of action–state pairs

- e.g., S(Arad) = {<Arad å Zerind, Zerind>, … }

3. goal test, can be

- explicit, e.g., x = "at Bucharest"

- implicit, e.g., Checkmate(x)

4. path cost (additive)

- e.g., sum of distances, number of actions executed, etc.

- c(x,a,y) is the step cost, assumed to be ≥ 0

� A solution is a sequence of actions leading from the initial state to a
goal state

12

Selecting a state space

� Real world is absurdly complex

å State space must be abstracted for problem solving

� (Abstract) state corresponds to set of real states

� (Abstract) action corr. to complex combination of real actions

- E.g., "Arad å Zerind" represents a complex set of possible routes,
detours, rest stops, etc.

� For guaranteed realizability, any real state "in Arad“ must get to
some real state "in Zerind"

� (Abstract) solution corresponds to

- Set of real paths that are solutions in the real world

� Each abstract action should be "easier" than the original problem

13

Vacuum world state space graph

� States?

� Actions?

� Goal test?

� Path cost?

14

Vacuum world state space graph

� States? two locations, dirt, and robot location

� Actions? Left, Right, Suck

� Goal test? no dirt at all locations

� Path cost? 1 per action

15

Example: The 8-puzzle

� States?

� Actions?

� Goal test?

� Path cost?

16

Example: The 8-puzzle

� States? locations of tiles

� Actions? move blank left, right, up, down

� Goal test? = goal state (given)

� Path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

17

Example: robotic assembly

� States? real-valued coordinates of robot joint angles and parts of the
object to be assembled

� Actions? continuous motions of robot joints

� Goal test? complete assembly

� Path cost? time to execute

18

Example: 8-queens problem

� States?

� Actions?

� Goal test?

� Path cost?

19

Example: 8-queens problem

Incremental formulation vs. complete-state formulation

� States?

� Actions?

� Goal test?

� Path cost?

20

Example: 8-queens problem

Incremental formulation

� States? any arrangement of 0 to 8 queens on the board

� Initial state? no queens

� Actions? add queen in empty square

� Goal test? 8 queens on board and none attacked

� Path cost? none

64*63*…*57 approx. 1.8 x 1014 possible sequences to investigate

21

Example: 8-queens problem

Incremental formulation (alternative)

� States? n (0≤ n≤ 8) queens on the board, one per column in the n
leftmost columns with no queen attacking another.

� Actions? Add queen in leftmost empty column such that is not
attacking other queens

22

Basic search algorithms

How do we find the solutions of previous problems?

- Search the state space (remember complexity of space depends on

state representation)

- Here: search through explicit tree generation

- ROOT= initial state.

- Nodes and leafs generated through successor function.

- In general search generates a graph (same state through multiple paths)

23

Simple tree search example

function TREE-SEARCH(problem, strategy) return a solution or failure

Initialize search tree to the initial state of the problem

do
if no candidates for expansion then return failure
choose leaf node for expansion according to strategy
if node contains goal state then return solution
else expand the node and add resulting nodes to the search tree

enddo

24

Simple tree search example

function TREE-SEARCH(problem, strategy) return a solution or failure

Initialize search tree to the initial state of the problem

do
if no candidates for expansion then return failure
choose leaf node for expansion according to strategy
if node contains goal state then return solution
else expand the node and add resulting nodes to the search tree

enddo

25

Simple tree search example

function TREE-SEARCH(problem, strategy) return a solution or failure

Initialize search tree to the initial state of the problem

do
if no candidates for expansion then return failure
choose leaf node for expansion according to strategy
if node contains goal state then return solution
else expand the node and add resulting nodes to the search tree

enddo

←Determines search
process!!

26

State space vs. search tree

A state is a (representation of) a physical configuration

A node is a data structure belong to a search tree

- A node has a parent, children, … and includes path cost, depth, …

- Here node= <state, parent-node, action, path-cost, depth>

- FRINGE= contains generated nodes which are not yet expanded

- White nodes with black outline

27

Tree search algorithm

function TREE-SEARCH(problem,fringe) return a solution or failure

fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do

if EMPTY?(fringe) then return failure

node ← REMOVE-FIRST(fringe)

if GOAL-TEST[problem] applied to STATE[node] succeeds

then return SOLUTION(node)

fringe ← INSERT-ALL(EXPAND(node, problem), fringe)

28

Tree search algorithm (2)

function EXPAND(node,problem) return a set of nodes

successors ← the empty set

for each <action, result> in SUCCESSOR-FN[problem](STATE[node]) do

s ← a new NODE

STATE[s] ← result

PARENT-NODE[s] ← node

ACTION[s] ← action

PATH-COST[s] ← PATH-COST[node] + STEP-COST(node, action,s)

DEPTH[s] ← DEPTH[node]+1

add s to successors

return successors

29

Search strategies

� A search strategy is defined by picking the order of node expansion

� Strategies are evaluated along the following dimensions:

- completeness: does it always find a solution if one exists?

- time complexity: number of nodes generated

- space complexity: maximum number of nodes in memory

- optimality: does it always find a least-cost solution?

� Time and space complexity are measured in terms of

- b: maximum branching factor of the search tree

- d: depth of the least-cost solution

- m: maximum depth of the state space (may be ∞)

30

Uninformed search strategies

Uninformed search strategies use only the information available in the

problem definition

When strategies can determine whether one non-goal state is better

than another → informed search

� Breadth-first search

� Uniform-cost search

� Depth-first search

� Depth-limited search

� Iterative deepening search

� Bidirectional search

31

Breadth-first search

� Expand shallowest unexpanded node

� Implementation:

- fringe is a FIFO queue, i.e., new successors go at end

32

Breadth-first search

� Expand shallowest unexpanded node

� Implementation:

- fringe is a FIFO queue, i.e., new successors go at end

33

Breadth-first search

� Expand shallowest unexpanded node

� Implementation:

- fringe is a FIFO queue, i.e., new successors go at end

34

Breadth-first search

� Expand shallowest unexpanded node

� Implementation:

- fringe is a FIFO queue, i.e., new successors go at end

35

Properties of breadth-first search

� Complete? Yes (if b is finite)

� Time? 1+b+b2+b3+… +bd + b(bd-1) = O(bd+1)

� Space? O(bd+1) (keeps every node in memory)

� Optimal? Yes (if cost = 1 per step)

� Space is the bigger problem (more than time)

36

BF-search; evaluation

� Two lessons:

- Memory requirements are a bigger problem than its execution time

- Uniformed search only applicable for small instances

-> Exploit knowledge about the problem

1 exabyte3523 years101514

10 petabytes35 years101312

101 terabytes129 days101110

1 terabyte31 hours1098

10 gigabytes19 minutes1076

106 megabytes11 seconds1111004

1 megabyte0.11 seconds11002

MEMORYTIMENODESDEPTH

b=10; 10.000 nodes/sec; 1000 bytes/node

37

Uniform-cost search

� Expand least-cost unexpanded node

� Implementation:

- fringe = queue ordered by path cost

� Equivalent to breadth-first if step costs all equal

� Complete? Yes, if step cost ≥ ε
� Time? # of nodes with g ≤ cost of optimal solution, O(b1+floor(C*/ ε))

where C* is the cost of the optimal solution

� Space? # of nodes with g ≤ cost of optimal solution, O(b1+floor (C*/ ε))

� Optimal? Yes – nodes expanded in increasing order of path costs

38

Depth-first search

� Expand deepest unexpanded node

� Implementation:

- fringe = LIFO queue, i.e., put successors at front

39

Depth-first search

� Expand deepest unexpanded node

� Implementation:

- fringe = LIFO queue, i.e., put successors at front

40

Depth-first search

� Expand deepest unexpanded node

� Implementation:

- fringe = LIFO queue, i.e., put successors at front

41

Depth-first search

� Expand deepest unexpanded node

� Implementation:

- fringe = LIFO queue, i.e., put successors at front

42

Depth-first search

� Expand deepest unexpanded node

� Implementation:

- fringe = LIFO queue, i.e., put successors at front

43

Depth-first search

� Expand deepest unexpanded node

� Implementation:

- fringe = LIFO queue, i.e., put successors at front

44

Depth-first search

� Expand deepest unexpanded node

� Implementation:

- fringe = LIFO queue, i.e., put successors at front

45

Depth-first search

� Expand deepest unexpanded node

� Implementation:

- fringe = LIFO queue, i.e., put successors at front

46

Depth-first search

� Expand deepest unexpanded node

� Implementation:

- fringe = LIFO queue, i.e., put successors at front

47

Depth-first search

� Expand deepest unexpanded node

� Implementation:

- fringe = LIFO queue, i.e., put successors at front

48

Depth-first search

� Expand deepest unexpanded node

� Implementation:

- fringe = LIFO queue, i.e., put successors at front

49

Depth-first search

� Expand deepest unexpanded node

� Implementation:

- fringe = LIFO queue, i.e., put successors at front

50

Properties of depth-first search

� Complete? No: fails in infinite-depth spaces, spaces with loops

- Modify to avoid repeated states along path

å complete in finite spaces

� Time? O(bm): terrible if m is much larger than d

(remember: m … maximum depth of search space)

- but if solutions are dense, may be much faster than breadth-first

� Space? O(bm), i.e., linear space!

� Optimal? No

51

Depth-limited search

Is DF-search with depth limit l.

- i.e. nodes at depth l have no successors

- Problem knowledge can be used

Solves the infinite-path problem, but

If l < d then incompleteness results

If l > d then not optimal

Time complexity:

Space complexity:

O(bl)

O(bl)

52

Depth-limited algorithm

function DEPTH-LIMITED-SEARCH(problem,limit) return a solution or failure/cutoff

return RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]),problem,limit)

function RECURSIVE-DLS(node, problem, limit) return a solution or failure/cutoff

cutoff_occurred? ← false

if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)

else if DEPTH[node] == limit then return cutoff

else for each successor in EXPAND(node, problem) do

result ← RECURSIVE-DLS(successor, problem, limit)

if result == cutoff then cutoff_occurred? ← true

else if result ≠ failure then return result

if cutoff_occurred? then return cutoff else return failure

53

Iterative deepening search

What?

- A general strategy to find best depth limit l

- Solution is found at depth d, the depth of the shallowest solution-node

- Often used in combination with DF-search

Combines benefits of DF- and BF-search

54

Iterative deepening search

function ITERATIVE_DEEPENING_SEARCH(problem)

return a solution or failure

inputs: problem

for depth ← 0 to ∞ do

result ← DEPTH-LIMITED_SEARCH(problem, depth)

if result ≠ cuttoff then return result

55

Iterative deepening search l =0

56

Iterative deepening search l =1

57

Iterative deepening search l =2

58

Iterative deepening search l =3

59

Iterative deepening search

� Number of nodes generated in a depth-limited search to depth d with
branching factor b:

NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

� Number of nodes generated in an iterative deepening search to
depth d with branching factor b:

NIDS = (d+1)b0 + d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + 1bd

� For b = 10, d = 5,

- NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111

- NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

� Overhead = (123,456 - 111,111)/111,111 = 11%

60

Properties of iterative deepening search

� Complete? Yes

� Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)

� Space? O(bd)

� Optimal? Yes, if step cost = 1

Num. comparison for b=10 and d=5 solution at far right

NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

NBFS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990= 1,111,101

� IDS does better because nodes at depth d are not further expanded

� BFS can be modified to apply goal test when a node is generated

61

Bidirectional search

Two simultaneous searches from start an goal

- Motivation:

Check whether the node belongs to the other fringe before expansion

Complete and optimal if both searches are BF

Space complexity is the most significant weakness

bd / 2 + bd / 2 ≠ bd

62

How to search backwards?

The predecessor of each node should be efficiently computable

- When actions are easily reversible

Number of goal states does not explode

63

Summary of algorithms

YESc,d

bd/2

bd/2

YESa,d

Bidirectio
nal

search

NO

bm

bm

NO

Depth-
First

YEScNOYESYEScOpti
mal?

bdblb1+floor(C*/e)bd+1Space

bdblb1+floor(C*/e)bd+1Time

YESaYES,

if l ≥ d

YESa,bYESaComp
lete?

Iterative
deepe
ning

Depth-
limited

Uniform-
cost

Breadth-
First

Criterion

a … if d is finite

b … if step costs >= e

c … if step costs are equal

d … if both directions use BFS

64

Repeated states

� Failure to detect repeated states can turn a linear problem into an

exponential one!

65

Graph search algorithm

“Closed”-list stores all expanded nodes

function GRAPH-SEARCH(problem,fringe) return a solution or failure

closed ← an empty set

fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do

if EMPTY?(fringe) then return failure

node ← REMOVE-FIRST(fringe)

if GOAL-TEST[problem] applied to STATE[node] succeeds

then return SOLUTION(node)

if STATE[node] is not in closed then

add STATE[node] to closed

fringe ← INSERT-ALL(EXPAND(node, problem), fringe)

66

Graph search, evaluation

Optimality:

- GRAPH-SEARCH discard newly discovered paths

̇ This may result in a sub-optimal solution

̇ YET: when uniform-cost search or BF-search with constant

step cost

Time and space complexity,

- proportional to the size of the state space

(may be much smaller than O(bd))

- DF- and ID-search with closed list no longer has linear space

requirements since all nodes are stored in closed list!!

67

Summary

� Problem formulation usually requires abstracting away real-world

details to define a state space that can feasibly be explored

� Variety of uninformed search strategies

� Iterative deepening search uses only linear space and not much

more time than other uninformed algorithms

